

Certificate of Analysis

FOR COMPLIANCE

Kaycha Labs

.5g Uninfused Blunt Randy Marsh Matrix: Flower

Type: Pre-roll

Sample:AL30921003-010 Harvest/Lot ID: DK16723BLT.5-1RM

> Batch#: DK16723BLT.5-1RM Sample Size Received: 13 units

Total Amount: 1500 units Retail Product Size: .5 gram Sampled: 09/21/23 01:15 PM Sampling Start: 01:15 PM Sampling End: 01:15 PM

Pages 1 of 5

PASSED

HPI Canna Inc

License #: OCM-AUCP-22-000022

886 Noxon Road

Poughkeepsie, NY, 12603, US

PRODUCT IMAGE

SAFETY RESULTS

Heavy Metals PASSED

Microbials PASSED

PASSED

Residuals Solvents

PASSED

Water Activity PASSED

Moisture PASSED

MISC.

Terpenes TESTED

PASSED

Cannabinoid

Total THC

Total CBD Total CBD/Container : 0.000 mg

Total Cannabinoids

												ш	
	(6AR,9R) D10-THC	(6AR,9S) D10-THC	СВС	CBD	CBDA	CBDV	CBG	CBGA	CBN	D8-THC	D9-THC	THCA	THCV
%	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.1278</th><th>0.9752</th><th><loq< th=""><th>0.1779</th><th>3.7237</th><th>17.4393</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.1278</th><th>0.9752</th><th><loq< th=""><th>0.1779</th><th>3.7237</th><th>17.4393</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.1278</th><th>0.9752</th><th><loq< th=""><th>0.1779</th><th>3.7237</th><th>17.4393</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.1278</th><th>0.9752</th><th><loq< th=""><th>0.1779</th><th>3.7237</th><th>17.4393</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th>0.1278</th><th>0.9752</th><th><loq< th=""><th>0.1779</th><th>3.7237</th><th>17.4393</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th>0.1278</th><th>0.9752</th><th><loq< th=""><th>0.1779</th><th>3.7237</th><th>17.4393</th><th><loq< th=""></loq<></th></loq<></th></l0q<>	0.1278	0.9752	<loq< th=""><th>0.1779</th><th>3.7237</th><th>17.4393</th><th><loq< th=""></loq<></th></loq<>	0.1779	3.7237	17.4393	<loq< th=""></loq<>
mg/unit	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.639</th><th>4.876</th><th><loq< th=""><th>0.890</th><th>18.619</th><th>87.197</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.639</th><th>4.876</th><th><loq< th=""><th>0.890</th><th>18.619</th><th>87.197</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.639</th><th>4.876</th><th><loq< th=""><th>0.890</th><th>18.619</th><th>87.197</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><l0q< th=""><th>0.639</th><th>4.876</th><th><loq< th=""><th>0.890</th><th>18.619</th><th>87.197</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<></th></loq<>	<loq< th=""><th><l0q< th=""><th>0.639</th><th>4.876</th><th><loq< th=""><th>0.890</th><th>18.619</th><th>87.197</th><th><loq< th=""></loq<></th></loq<></th></l0q<></th></loq<>	<l0q< th=""><th>0.639</th><th>4.876</th><th><loq< th=""><th>0.890</th><th>18.619</th><th>87.197</th><th><loq< th=""></loq<></th></loq<></th></l0q<>	0.639	4.876	<loq< th=""><th>0.890</th><th>18.619</th><th>87.197</th><th><loq< th=""></loq<></th></loq<>	0.890	18.619	87.197	<loq< th=""></loq<>
LOQ	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
	%	%	%	%	%	%	%	%	%	%	%	%	%

Weight: 0.2013g

Analysis Method: SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date: 09/22/23 16:50:51

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 09/26/23

Kaycha Labs

.5g Uninfused Blunt Randy Marsh Matrix : Flower

PASSED

Type: Pre-roll

Certificate of Analysis

HPI Canna Inc

886 Noxon Road Poughkeepsie, NY, 12603, US **Telephone:** (716) 431-8212 **Email:** d.mosquera@hpicanna.com **License #:** OCM-AUCP-22-000022 Sample: AL30921003-010 Harvest/Lot ID: DK16723BLT.5-1RM

Batch#: DK16723BLT.5-1RM Sample Size Received: 13 units
Sampled: 09/21/23 Total Amount: 1500 units

Page 2 of 5

Terpenes

TESTED

Terpenes	LOQ (%)	mg/unit	%	Result (%)	Terpe	enes
VALENCENE	0.0	<loq< td=""><td><loq< td=""><td></td><td>BORNE</td><td>EOL</td></loq<></td></loq<>	<loq< td=""><td></td><td>BORNE</td><td>EOL</td></loq<>		BORNE	EOL
ALPHA-PINENE	0.0	<loq< td=""><td><loq< td=""><td></td><td>BETA-0</td><td>CARYOPHYLLENE</td></loq<></td></loq<>	<loq< td=""><td></td><td>BETA-0</td><td>CARYOPHYLLENE</td></loq<>		BETA-0	CARYOPHYLLENE
TRANS-NEROLIDOL	0.0	<loq< td=""><td><loq< td=""><td></td><td>ALPHA</td><td>-HUMULENE</td></loq<></td></loq<>	<loq< td=""><td></td><td>ALPHA</td><td>-HUMULENE</td></loq<>		ALPHA	-HUMULENE
CAMPHENE	0.0	<loq< td=""><td><loq< td=""><td></td><td>ALPHA</td><td>-CEDRENE</td></loq<></td></loq<>	<loq< td=""><td></td><td>ALPHA</td><td>-CEDRENE</td></loq<>		ALPHA	-CEDRENE
SABINENE	0.0	<loq< td=""><td><loq< td=""><td></td><td>ALPHA</td><td>-BISABOLOL</td></loq<></td></loq<>	<loq< td=""><td></td><td>ALPHA</td><td>-BISABOLOL</td></loq<>		ALPHA	-BISABOLOL
BETA-PINENE	0.0	<loq< td=""><td><loq< td=""><td></td><td>ALPHA</td><td>TERPINEOL</td></loq<></td></loq<>	<loq< td=""><td></td><td>ALPHA</td><td>TERPINEOL</td></loq<>		ALPHA	TERPINEOL
PULEGONE	0.0	<loq< td=""><td><loq< td=""><td></td><td>Weight:</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>Weight:</td><td></td></loq<>		Weight:	
BETA-MYRCENE	0.0	<loq< td=""><td><loq< td=""><td></td><td>0.5092g</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>0.5092g</td><td></td></loq<>		0.5092g	
ALPHA-PHELLANDRENE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td>Method: SOP.T.30</td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td>Method: SOP.T.30</td></loq<>			Method: SOP.T.30
3-CARENE	0.0	<loq< td=""><td><loq< td=""><td></td><td>Analyze</td><td>d Date: 09/22/23 1</td></loq<></td></loq<>	<loq< td=""><td></td><td>Analyze</td><td>d Date: 09/22/23 1</td></loq<>		Analyze	d Date: 09/22/23 1
NEROL	0.0	<loq< td=""><td><loq< td=""><td></td><td>-</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>-</td><td></td></loq<>		-	
ALPHA-TERPINENE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
LINALOOL	0.0	1	0.1			
LIMONENE	0.0	1	0.1			
EUCALYPTOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
OCIMENE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
ISOBORNEOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
HEXAHYDROTHYMOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
SABINENE HYDRATE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
GUAIOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
TERPINOLENE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
GERANYL ACETATE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
FENCHONE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
GERANIOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
GAMMA-TERPINENE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
FENCHYL ALCOHOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
ISOPULEGOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CAMPHOR	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CIS-NEROLIDOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CEDROL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td></loq<>			
CARYOPHYLLENE OXIDE	0.0	1	0.1			

Terpenes	LOQ (%)	mg/uni	t %	Result (%)	
BORNEOL	0.0	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
BETA-CARYOPHYLLENE	0.0	6	1.2		
ALPHA-HUMULENE	0.0	3	0.5		
ALPHA-CEDRENE	0.0	<loq< td=""><td><loq< td=""><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td></loq<>		
ALPHA-BISABOLOL	0.0	2	0.3		
ALPHA TERPINEOL	0.0	1	0.1		
W. C. Li					

Analysis Method : SOP.T.30.064.NY, SOP.T.40.064.NY Analyzed Date : 09/22/23 16:00:13

Total (%)

2.4

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 09/26/23

Kaycha Labs

.5g Uninfused Blunt Randy Marsh Matrix : Flower Type: Pre-roll

PASSED

886 Noxon Road Poughkeepsie, NY, 12603, US **Telephone:** (716) 431-8212 Fmail: d mosquera@hnicanna.com License # : OCM-AUCP-22-000022 Sample : AL30921003-010 Harvest/Lot ID: DK16723BLT.5-1RM

Certificate of Analysis

Batch#: DK16723BLT.5-1RM Sample Size Received: 13 units Sampled: 09/21/23 Total Amount: 1500 units

Page 3 of 5

Pesticides

P	A	5	5	Ε	

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<loq< th=""></loq<>
AZADIRACHTIN	0.1	ppm	1	PASS	<loq< th=""></loq<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<loq< td=""></loq<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<l0q< th=""></l0q<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<loq< th=""></loq<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< th=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
ACEQUINOCYL	0.1	ppm	2	PASS	<l0q< th=""></l0q<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ALDICARB	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BIFENAZATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DAMINOZIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BOSCALID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
CARBOFURAN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
DIAZINON	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DICHLORVOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
DIMETHOATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DIMETHOMORPH	0.1	ppm	1	PASS	<loq< td=""></loq<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ETOFENPROX	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ETOXAZOLE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENHEXAMID	0.1	ppm	1	PASS	<loq< td=""></loq<>
FENOXYCARB	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
FIPRONIL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
FLONICAMID	0.1	ppm	1	PASS	<loq< th=""></loq<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<loq< th=""></loq<>
IMAZALIL	0.1	ppm	0.2	PASS	<l0q< th=""></l0q<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
MALATHION	0.1	ppm	0.2	PASS	<l0q< th=""></l0q<>
METALAXYL	0.1	ppm	0.2	PASS	<l0q< th=""></l0q<>
METHIOCARB	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
METHOMYL	0.1	ppm	0.4	PASS	<l0q< th=""></l0q<>
MEVINPHOS	0.1	ppm	1	PASS	<l0q< th=""></l0q<>
NALED	0.1	ppm	0.5	PASS	<l0q< th=""></l0q<>
OXAMYL	0.1	ppm	1	PASS	<l0q< th=""></l0q<>

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PERMETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< th=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< th=""></loq<>

Analysis Method : SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date : 09/23/23 10:35:06

Analysis Method: SOP.T.40.154.NY Analyzed Date: 09/23/23 10:56:26

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 09/26/23

Kaycha Labs

.5g Uninfused Blunt Randy Marsh Matrix : Flower Type: Pre-roll

PASSED

Certificate of Analysis

886 Noxon Road Poughkeepsie, NY, 12603, US **Telephone:** (716) 431-8212 Fmail: d mosquera@hnicanna.com License # : OCM-AUCP-22-000022 Harvest/Lot ID: DK16723BLT.5-1RM

Sample Size Received: 13 units Batch#: DK16723BLT.5-1RM Sampled: 09/21/23 Total Amount: 1500 units

Page 4 of 5

Units

ppm

ppm

ppm

mag

ppm

mag

LOO

0.003

0.003

0.003

0.003

0.010

0.003

Microbial

PASSED

AFLATOXIN G2

AFLATOXIN G1

AFLATOXIN B2

AFLATOXIN B1

OCHRATOXIN A+

TOTAL AFLATOXINS (B1, B2, G1, G2)

Analyte

Mycotoxins

PASSED

Action

Level

0.02

0.02

0.02

0.02

0.02

0.02

Result Pass /

<LOQ PASS

<LOQ PASS

<LOO PASS

<LOQ PASS

<LOQ PASS

<L00

Fail

PASS

Analyte	LOQ	Units	Result	Pass / Fail	Action Level
TOTAL AEROBIC BACTERIA	100	CFU/g	210	TESTED	
TOTAL YEAST AND MOLD	100	CFU/g	44000	TESTED	
ESCHERICHIA COLI SHIGELLA SPP			Not Present	PASS	
SALMONELLA SPECIES			Not Present	PASS	
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	

rounding errors.

Analysis Method : SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY **Analyzed Date :** $09/22/23\ 11:03:47$

Analysis Metho Analyzed Date	od: SOP.T.30.104.NY, SOP.T.40.104.NY: N/A

Weight: 1.0586g

Heavy Metals

PASSED

Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.1000	ug/g	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2
ARSENIC	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.2</th></loq<>	PASS	0.2
CADMIUM	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.3</th></loq<>	PASS	0.3
CHROMIUM	1.0000	ug/g	<loq< th=""><th>PASS</th><th>110</th></loq<>	PASS	110
COPPER	1.0000	ug/g	<loq< th=""><th>PASS</th><th>30</th></loq<>	PASS	30
LEAD	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
MERCURY	0.0100	ug/g	<loq< th=""><th>PASS</th><th>0.1</th></loq<>	PASS	0.1
NICKEL	0.1000	ug/g	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2

Weight: 0.413g

Analysis Method: SOP.T.30.084.NY, SOP.T.40.084.NY

Analyzed Date: 09/25/23 09:57:16

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 09/26/23

Kaycha Labs

.5g Uninfused Blunt Randy Marsh Matrix : Flower Type: Pre-roll

Certificate of Analysis

PASSED

HDI Canna Inc

886 Noxon Road Poughkeepsie, NY, 12603, US **Telephone:** (716) 431-8212 **Email:** d.mosquera@hpicanna.com **License #:** OCM-AUCP-22-000022 Harvest/Lot ID: DK16723BLT.5-1RM

Batch#: DK16723BLT.5-1RM Sample Size Received: 13 units
Sampled: 09/21/23 Total Amount: 1500 units

Page 5 of 5

Filth/Foreign Material

PASSED

Moisture

Analyte	LOQ	Units	Result	P/F	Action Level	Analyte	LOQ	Units	Result	P/F	Action Level
Stems (>3mm)		%	ND	PASS	5	Moisture Content	5.0	%	10.8	PASS	15
Foreign Matter		%	ND	PASS	2	Weight:					
Mammalian excreta		mg	ND	PASS	1	0.506g					
Weight:						Analysis Method: SOP.T.40.021					

Analysis Method: SOP.T.40.090

Water Activity

PASSED

Analyte Water Activity	LOQ 0.10	Units aw	Result 0.50	P/F PASS	Action Level 0.65
Weight: 0.8692g					
Analysis Method : SOP T 40 019					

Analysis Method : SOP.T.40.019 Analyzed Date : 09/25/23 14:44:01

.

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

