

Certificate of Analysis

FOR COMPLIANCE

Kaycha Labs

Type: Flower - Cured

1/8 Of flower Randy Marsh Matrix: Flower

Sample:AL30809002-009 Harvest/Lot ID: 21623-05FLW1

Batch#: 21623-05FLW1

Seed to Sale# N/a

Sample Size Received: 20 units Total Amount: 6400 units Retail Product Size: 3.5 gram Sampled: 08/09/23 10:30 AM

> Sampling Start: 10:30 AM Sampling End: 10:30 AM

> > **PASSED**

Pages 1 of 5

HPI Canna Inc

License #: OCM-AUCP-22-000022

886 Noxon Road

Poughkeepsie, NY, 12603, US

PRODUCT IMAGE

SAFETY RESULTS

Terpenes TESTED

MISC.

Pesticides PASSED

PASSED

PASSED

PASSED

Residuals Solvents

PASSED

PASSED

PASSED

PASSED

Cannabinoid

Total THC

Total CBD Total CBD/Container : 0.000 mg

Total Cannabinoids 5.6711%

	(6AR,9R) D10-THC	(6AR,9S) D10-THC	СВС	CBD	CBDA	CBDV	CBG	CBGA	CBN	D8-THC	D9-THC	THCA	тнсу
%	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.9780</th><th><loq< th=""><th><loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.9780</th><th><loq< th=""><th><loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.9780</th><th><loq< th=""><th><loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>0.9780</th><th><loq< th=""><th><loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>0.9780</th><th><loq< th=""><th><loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>0.9780</th><th><loq< th=""><th><loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>0.9780</th><th><loq< th=""><th><loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	0.9780	<loq< th=""><th><loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>3.9098</th><th>20.6326</th><th><loq< th=""></loq<></th></loq<>	3.9098	20.6326	<loq< th=""></loq<>
mg/unit	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>34.230</th><th><loq< th=""><th><loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>34.230</th><th><loq< th=""><th><loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>34.230</th><th><loq< th=""><th><loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th>34.230</th><th><loq< th=""><th><loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th>34.230</th><th><loq< th=""><th><loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th>34.230</th><th><loq< th=""><th><loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th>34.230</th><th><loq< th=""><th><loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	34.230	<loq< th=""><th><loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th>136.843</th><th>722.141</th><th><loq< th=""></loq<></th></loq<>	136.843	722.141	<loq< th=""></loq<>
LOQ	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
	%	%	%	%	%	%	%	%	%	%	%	%	%
Weight:													

Analysis Method: SOP.T.30.031.NY, SOP.T.40.031.NY Analyzed Date: 08/09/23 14:01:53

rounding errors.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the

lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 08/22/23

Kaycha Labs

1/8 Of flower Randy Marsh Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

886 Noxon Road Poughkeepsie, NY, 12603, US **Telephone:** (716) 431-8212 Fmail: d mosquera@hnicanna.com License # : OCM-AUCP-22-000022 Sample : AL30809002-009 Harvest/Lot ID: 21623-05FLW1

Batch#: 21623-05FLW1 Sampled: 08/09/23

Sample Size Received: 20 units Total Amount : 6400 units Sample Method : SOP Client Method **PASSED**

Page 2 of 5

Terpenes

TESTED

Ferpenes LC (%		mg/unit	%	Result (%)		Terpenes	LOQ (%)	mg/unit	%	Result (%)
ALENCENE 0.0		<loq< td=""><td><loq< td=""><td></td><td></td><td>BORNEOL</td><td>0.0</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td>BORNEOL</td><td>0.0</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>			BORNEOL	0.0	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
LPHA-PINENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td>BETA-CARYOPHYLLENE</td><td>0.0</td><td>49</td><td>1.4</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td>BETA-CARYOPHYLLENE</td><td>0.0</td><td>49</td><td>1.4</td><td></td></loq<>		i	BETA-CARYOPHYLLENE	0.0	49	1.4	
RANS-NEROLIDOL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td>ALPHA-HUMULENE</td><td>0.0</td><td>18</td><td>0.5</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td>ALPHA-HUMULENE</td><td>0.0</td><td>18</td><td>0.5</td><td></td></loq<>		i	ALPHA-HUMULENE	0.0	18	0.5	
CAMPHENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td>ALPHA-CEDRENE</td><td>0.0</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td>ALPHA-CEDRENE</td><td>0.0</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		i	ALPHA-CEDRENE	0.0	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
ABINENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td>ALPHA-BISABOLOL</td><td>0.0</td><td>11</td><td>0.3</td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td>ALPHA-BISABOLOL</td><td>0.0</td><td>11</td><td>0.3</td><td></td></loq<>		i	ALPHA-BISABOLOL	0.0	11	0.3	
ETA-PINENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td>ALPHA TERPINEOL</td><td>0.0</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td>ALPHA TERPINEOL</td><td>0.0</td><td><loq< td=""><td><loq< td=""><td></td></loq<></td></loq<></td></loq<>		i	ALPHA TERPINEOL	0.0	<loq< td=""><td><loq< td=""><td></td></loq<></td></loq<>	<loq< td=""><td></td></loq<>	
PULEGONE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td>Weight:</td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td>Weight:</td><td></td><td></td><td></td><td></td></loq<>		i	Weight:				
BETA-MYRCENE 0.0)	4	0.1			0.9813g				
LPHA-PHELLANDRENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td></td><td>Analysis Method: SOP.T.30.064.NY, SOP.T.40.064.NY</td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td>Analysis Method: SOP.T.30.064.NY, SOP.T.40.064.NY</td><td></td><td></td><td></td><td></td></loq<>			Analysis Method: SOP.T.30.064.NY, SOP.T.40.064.NY				
-CARENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td>Analyzed Date: 08/09/23 20:40:27</td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td>Analyzed Date: 08/09/23 20:40:27</td><td></td><td></td><td></td><td></td></loq<>		i	Analyzed Date: 08/09/23 20:40:27				
IEROL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
LPHA-TERPINENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
INALOOL 0.0)	4	0.1							
IMONENE 0.0)	7	0.2							
UCALYPTOL 0.0)	<loq< td=""><td><loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></loq<>							
OCIMENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
SOBORNEOL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
IEXAHYDROTHYMOL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
ABINENE HYDRATE 0.0)	<l0q< td=""><td><l0q< td=""><td></td><td>ĺ</td><td></td><td></td><td></td><td></td><td></td></l0q<></td></l0q<>	<l0q< td=""><td></td><td>ĺ</td><td></td><td></td><td></td><td></td><td></td></l0q<>		ĺ					
GUAIOL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
ERPINOLENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
GERANYL ACETATE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
ENCHONE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
GERANIOL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
AMMA-TERPINENE 0.0)	<loq< td=""><td><loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>i</td><td></td><td></td><td></td><td></td><td></td></loq<>		i					
ENCHYL ALCOHOL 0.0)	<l0q< td=""><td><loq< td=""><td></td><td>į</td><td></td><td></td><td></td><td></td><td></td></loq<></td></l0q<>	<loq< td=""><td></td><td>į</td><td></td><td></td><td></td><td></td><td></td></loq<>		į					
SOPULEGOL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>j</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>j</td><td></td><td></td><td></td><td></td><td></td></loq<>		j					
AMPHOR 0.0)	<loq< td=""><td><loq< td=""><td></td><td>İ</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>İ</td><td></td><td></td><td></td><td></td><td></td></loq<>		İ					
IS-NEROLIDOL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>İ</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>İ</td><td></td><td></td><td></td><td></td><td></td></loq<>		İ					
CEDROL 0.0)	<loq< td=""><td><loq< td=""><td></td><td>İ</td><td></td><td></td><td></td><td></td><td></td></loq<></td></loq<>	<loq< td=""><td></td><td>İ</td><td></td><td></td><td></td><td></td><td></td></loq<>		İ					
ARYOPHYLLENE OXIDE 0.0)	4	0.1							

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 08/22/23

Kaycha Labs

1/8 Of flower Randy Marsh Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

886 Noxon Road Poughkeepsie, NY, 12603, US **Telephone:** (716) 431-8212 Fmail: d mosquera@hnicanna.com License # : OCM-AUCP-22-000022 Sample : AL30809002-009 Harvest/Lot ID: 21623-05FLW1

Batch#: 21623-05FLW1 Sampled: 08/09/23

Sample Size Received: 20 units Total Amount: 6400 units Sample Method : SOP Client Method **PASSED**

Page 3 of 5

Pesticides

PASSED

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PYRETHRINS, TOTAL	0.1	ppm	1	PASS	<l0q< th=""></l0q<>
AZADIRACHTIN	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
INDOLE-3-BUTYRIC ACID	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
MYCLOBUTANIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
PIPERONYL BUTOXIDE	0.1	ppm	2	PASS	<loq< td=""></loq<>
ABAMECTIN B1A	0.1	ppm	0.5	PASS	<loq< td=""></loq<>
ACEPHATE	0.1	ppm	0.4	PASS	<l0q< td=""></l0q<>
ACEQUINOCYL	0.1	ppm	2	PASS	<loq< td=""></loq<>
ACETAMIPRID	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
ALDICARB	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
AZOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CHLORMEQUAT CHLORIDE	0.1	ppm	1	PASS	<loq< td=""></loq<>
BIFENAZATE	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
BIFENTHRIN	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
CARBARYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
COUMAPHOS	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
CHLORPYRIFOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
DAMINOZIDE	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
BOSCALID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
CARBOFURAN	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
CHLORANTRANILIPROLE	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
CLOFENTEZINE	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
DIAZINON	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
DICHLORVOS	0.1	ppm	1	PASS	<loq< td=""></loq<>
DIMETHOATE	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
DIMETHOMORPH	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
ETHOPROPHOS	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
ETOFENPROX	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
ETOXAZOLE	0.1	ppm	0.2	PASS	<l0q< td=""></l0q<>
FENHEXAMID	0.1	ppm	1	PASS	<loq< td=""></loq<>
FENOXYCARB	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
FENPYROXIMATE	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FIPRONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
FLONICAMID	0.1	ppm	1	PASS	<l0q< td=""></l0q<>
FLUDIOXONIL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
HEXYTHIAZOX	0.1	ppm	1	PASS	<loq< th=""></loq<>
IMAZALIL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
IMIDACLOPRID	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
KRESOXIM METHYL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
MALATHION	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METALAXYL	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHIOCARB	0.1	ppm	0.2	PASS	<loq< td=""></loq<>
METHOMYL	0.1	ppm	0.4	PASS	<loq< td=""></loq<>
MEVINPHOS	0.1	ppm	1	PASS	<loq< th=""></loq<>
NALED	0.1	ppm	0.5	PASS	<loq< th=""></loq<>
OXAMYL	0.1	ppm	1	PASS	<loq< td=""></loq<>

Pesticide	LOQ	Units	Action Level	Pass/Fail	Result
PACLOBUTRAZOL	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PERMETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PHOSMET	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PRALLETHRIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PROPICONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
PROPOXUR	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PYRIDABEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPINETORAM, TOTAL	0.1	ppm	1	PASS	<loq< th=""></loq<>
SPINOSAD, TOTAL	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROMESIFEN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROTETRAMAT	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
SPIROXAMINE	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TEBUCONAZOLE	0.1	ppm	0.4	PASS	<loq< th=""></loq<>
THIACLOPRID	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
THIAMETHOXAM	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
TRIFLOXYSTROBIN	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
CAPTAN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORDANE *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CHLORFENAPYR *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYFLUTHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
CYPERMETHRIN *	0.1	ppm	1	PASS	<loq< th=""></loq<>
METHYL PARATHION *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
MGK-264 *	0.1	ppm	0.2	PASS	<loq< th=""></loq<>
PENTACHLORONITROBENZENE *	0.1	ppm	1	PASS	<loq< th=""></loq<>

Analysis Method : SOP.T.40.104.NY, SOP.T30.104.NY and SOP.T.40.154.NY Analyzed Date : 08/09/23 15:42:17

1.0121g

Analysis Method: SOP.T.40.154.NY Analyzed Date: 08/09/23 15:42:23

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 08/22/23

Kaycha Labs

1/8 Of flower Randy Marsh Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

PASSED

HPI Canna Inc

886 Noxon Road Poughkeepsie, NY, 12603, US Telephone: (716) 431-8212 Email: d.mosquera@hpicanna.com License #: OCM-AUCP-22-000022 Sample : AL30809002-009 Harvest/Lot ID: 21623-05FLW1

Batch#: 21623-05FLW1 **Sampled**: 08/09/23

Sample Size Received: 20 units Total Amount: 6400 units Sample Method: SOP Client Method

Page 4 of 5

Units

ppm

ppm

ppm

mag

ppm

mag

LOO

0.003

0.003

0.003

0.003

0.010

0.003

Microbial

PASSED

Analyte

Mycotoxins

PASSED

Action

Level

0.02

0.02

0.02

0.02

0.02

0.02

Result Pass /

<LOQ PASS

<LOO PASS

<LOQ PASS

<LOQ PASS

<LOQ

<L00

Fail

PASS

PASS

Analyte	LOQ	Units	Result	Pass / Fail	
TOTAL AEROBIC BACTERIA	10	CFU/g	440	TESTED	
TOTAL YEAST AND MOLD	10	CFU/g	1400	TESTED	
ESCHERICHIA COLI SHIGELLA SPP			Not Present	PASS	
SALMONELLA SPECIES			Not Present	PASS	
ASPERGILLUS TERREUS			Not Present	PASS	
ASPERGILLUS NIGER			Not Present	PASS	
ASPERGILLUS FLAVUS			Not Present	PASS	
ASPERGILLUS FUMIGATUS			Not Present	PASS	

AFLATOXIN G2
AFLATOXIN G1
AFLATOXIN B2
AFLATOXIN B1
OCHRATOXIN A+
TOTAL AFLATOXINS (B1, B2, G1, G2)
Weight:
1.0121g

Action

Analysis Method : SOP.T.30.104.NY, SOP.T.40.104.NY **Analyzed Date :** 08/09/23 15:42:20

Weight: 1.0563g

Analysis Method : SOP.T.40.058A.NY, SOP.T.40.058B.NY, SOP.T.40.208.NY **Analyzed Date :** $08/09/23\ 14:45:08$

Heavy Metals

PASSED

Metal	LOQ	Units	Result	Pass / Fail	Action Level
ANTIMONY	0.1000	ug/g	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2
ARSENIC	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.2</th></loq<>	PASS	0.2
CADMIUM	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.3</th></loq<>	PASS	0.3
CHROMIUM	1.0000	ug/g	<loq< th=""><th>PASS</th><th>110</th></loq<>	PASS	110
COPPER	1.0000	ug/g	12.9844	PASS	30
LEAD	0.1000	ug/g	<loq< th=""><th>PASS</th><th>0.5</th></loq<>	PASS	0.5
MERCURY	0.0100	ug/g	<loq< th=""><th>PASS</th><th>0.1</th></loq<>	PASS	0.1
NICKEL	0.1000	ug/g	<loq< th=""><th>PASS</th><th>2</th></loq<>	PASS	2

Weight: 0.5006g

Analysis Method: SOP.T.30.084.NY, SOP.T.40.084.NY

Analyzed Date: 08/09/23 15:27:58

.

This Kaycha Labs Certification shall not be reproduced, unless in its entirety, without written approval from Kaycha Labs. The results relate only to the material or product analyzed. ND=Not Detected, ppm=Parts Per Million, ppb=Parts Per Billion, RSD=Relative Standard Deviation. Limit of Detection (LOD) and Limit Of Quantitation (LOQ) are terms used to describe the smallest concentration that can be detected and reliably measured by an analytical procedure, respectively. Action Levels are State determined thresholds based on 9 New York Codes, Rules and Regulations (NYCRR) Part 130 and Cannabis Law. The Measurement of Uncertainty (MU) error is available from the lab upon request. The "Decision Rule" for pass/fail does not include the MU. Any calculated totals may contain rounding errors.

Erica Troy

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

Signature 08/22/23

Kaycha Labs

1/8 Of flower Randy Marsh Matrix : Flower

Type: Flower - Cured

Certificate of Analysis

HDI Canna Inc

886 Noxon Road Poughkeepsie, NY, 12603, US **Telephone:** (716) 431-8212 **Email:** d.mosquera@hpicanna.com **License #:** OCM-AUCP-22-000022 Sample : AL30809002-009 Harvest/Lot ID: 21623-05FLW1

Batch#: 21623-05FLW1 **Sampled**: 08/09/23

Sample Size Received: 20 units Total Amount: 6400 units Sample Method: SOP Client Method PASSED

Page 5 of 5

Filth/Foreign Material

PASSED

Moisture

Analyte	LOQ	Units	Result	P/F	Action Level	Analyte	LOQ	Units	Result	P/F	Action Level
Stems (>3mm)	,	%	ND	PASS	5	Moisture Content	5.0	%	12.4	PASS	15
Foreign Matter		%	ND	PASS	2	Weight:					
Mammalian excreta		mg	ND	PASS	1	0.514g					
Weight:						Analysis Method: SOP.T.40.021					

Analysis Method : SOP.T.40.090

Water Activity

PASSED

Analyte Water Activity	LOQ 0.10	Units aw	Result 0.49	P/F PASS	Action Level 0.65
Weight: 0.595g					
Analysis Method : SOP.T.40.019					

Analyzed Date : 08/09/23 15:02:43

.

Lab Director

NY Permit # OCM-CPL-2022-00006 ISO 17025 Accreditation # 97164

